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Abstract

The boundedness and global attractivity of the nonnegative solutions
of a nonlinear difference equation is investigated by using the (extended)
Chebyshev polynomials. The paper is motivated by an open problem
proposed in [V. L. Kocic and G. Ladas, Global Behavior of Nonlinear
Difference Equations of Higher Order and Applications, Kluwer Academic
Publishers, Dordrecht, 1993].

1 Introduction

By using the (generalized) Chebyshev polynomials in this article we obtain some
results concerning boundedness of the solutions of a difference equation.

Recently there has been a lot of activity concerning the asymptotic behavior
of solutions of difference equations. Difference equations appear as natural de-
scriptions of observed evolution phenomena as well as in the study of discretiza-
tion methods for differential equations. And although difference equations seem
to be elementary in their own presentation, their theory is a lot richer than the
corresponding theory of differential equations. For example, a simple difference
equation resulting from a first order differential equation by the usual Euler’s
scheme, may have a phenomenon often called the appearance of ghost solutions,
or the existence of chaotic orbits that can only happen for higher order differ-
ential equations. Chaos and fractals are at the center of attention nowadays
and difference equations theory is what gives birth to both of them. Take, for
instance, the simple difference equation
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with initial values in the interval [0, 1] of the real line. It is easy to show
that it has periodic solutions of any period. (For each positive integer k the
function T(¥) admits fixed points). Generally speaking, this is a phenomenon
shared by all difference equations that possess a 3-cycle and it was discovered in
(1]. On the other hand it is well known, even from the end of the 19th century,
that linear difference equations and linear differential equations with polynomial
coefficients are related through a formal Mellin transformation. Indeed, let
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be a linear differential equation and let 7 denote the shift operator

Tlz)(s) =uls+ 1)
The formal Mellin transformation is defined by the substitutions
§—=T si — =t
* Tds

to the differential equation D. Then the linear difference equation
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is generated. If
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is a formal solution of (D), then the coefficients y, satisfy the difference equation
(A) and visa-versa, namely analytic Mellin transforms of solutions of (D) are
used to represent solutions of (A). For this situation one can consult [2].
Therefore the theory of difference equations is interesting in itself and as-

sumes great importance in the present world.

One of the properties which we investigate in difference equations, is bound-
edeness of the solutions. In terms of dynamical systems this is equivalent to
compactness of the solutions with respect to the discrete shifting semi-flow.
More facts on this topic can be found in [3]. See, also, [4], [5], [6], {7]. More
applications of these items are given in the recent book [8].

To show that one of the main problems in investigating such equations is to
establish boundedness of the solution we shall deal with a difference equation
of the form

Znt1 = S f(@act), (1)



where v > 0 and % is any positive integer. The problem is motivated by an
open problem stated in the monograph [9] and the work [10] The results are
presented in [11] and extend those given elsewhere and in [12]. For the same
function f(z) = b/(1 + z?) and exponent v = 2 the problem was discussed in
[13], where the condition

(k + 1)F1 > (2k)F

was used to guarantee boundedness of the solutions. But it is easy to see that
this condition is true only for k£ = 1,2, 3. Hence it is not so general as it seems
to be.

2 The main results
To proceed consider the following linear recursive relation
P (0y3) = aPale®) —Ep-plan) = 1,2, (2)
where ¢ > 0 and z € R. Associating Equ. (2) with the initial values
pila,z) = o, 7=0,1,.... k,

it is obvious that the solution p,(a,z) is a polynomial. For k = 1 the solution
of the difference equation (2) is given by

pn(a,z) = 2”$%Un(a2_l$:5£),
where Up(z) is the nth Chebychev polynomial of the second kind

1 [3)
Un(z) = 37 =1
k=0

(n—k)! 3k
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On the other hand it is very well known that the polynomial U, (z) can be given
via the solution p, by the formula

Un(z) = pa(z,272).
The basic things we use below are the polynomials of the form
gn(z) = palr, 2),

where «y is the exponent in Equ. (1). For these items we have the following
information:



Lemma. Assume that s, is the least positive solution of the polynomial
gn(z). Then we have the following facts:

(i) The sequence (sy,) is strictly decreasing, and

(i) For each integer n >k and all  =0,1,---,n we have

gn+1(sn) <0

q; (5n+l) > 0.

Remark. From the previous results we conclude that the sequence (s,) of
the least positive zeroes of the polynomials g,(z) converges to a point [ > 0. It
would be very useful to have information about it. Later on we shall see that
in case k£ = 1 this limit is equal to %? but for the general case the question is

open.

Theorem 1. Assume that f : RT — R% is a bounded function. If there
existn > k and r > 0 as well as a root s, > 0 of the polynomial g, (z) such that

T 2> 8n, (3)

and

supz” f(z) < +o0 (4)
>0

then any (positive) solution of equation (1) is bounded.
Sketch of the Proof: Let M > 0 be such that f(z) < M and z7f(z) < M,
for all z > 0. Then it is easy to see that for each s € [0,7] it holds

z° f(z) < M.

Consider an index n > k satisfying inequality (3). For simplicity set A := s,
and then, because of Lemma 1, we have

gn(N) =0
and
q; (A} > 0,

forall j =0,1,2,...,n—1.
Consider a solution (z;) of Equ. (1). Take any m > n+ 1 and for simplicity
set
zie= flws), wyi=af(z;) and 4; = g(A)



By making some manipulations on Equ. (1) we get

Im+1 = H?;(J;C-hl(ym—(k-a-j))tj (xm—(n-l))15"1_13-2=_i_k(Zm—(k-o-j))t"i
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This proves the theorem.

Corollary. Assume that f : R — R¥ is a bounded function. If there ezists

2
r>:%- (5)

satisfying relation (4), then any (positive) soluiion of the difference equation
Tnt1 = 23 f(Tn-1)

is bounded. Condition (5) is sharp, in the sense that it can not be weakened.
Proof. It is well known that the Chebyshev polynomials of the second kind
U, are given by the type

I _ 1 sin[(n + 1)arc cos z)]

Therefore the zeroes of the polynomial U, are the numbers

jm
n+1

cos Vi 3= 12y s

The greatest of them is the number cos(n—f;—l-). Hence we get
2

Sp = ———
" deos(Z5)’

which is a decreasing sequence (however, this illustrates the result of Lemma 1)
and it tends to 1: Now the first part of the proof follows by choosing s, with

2
~y

and applying Theorem 1.
The sharpness of condition (5) can be proved by the use of the difference

equation

2
2z;

Tnyl1 = —.
" 1+En—l



Here we have

Filz) = g and v = 2.

Thus the supremum of all » > 0 which make z” f(z) bounded is rq = 1, which is
2

not (strictly) greater than Z- = 1. It can be shown that there exist unbounded

solutions of this equation.

Theorem 2. Assume that the function f : [0,+0c0) — [0, +c0) is continuous
and decreasing and such that

10y 2.1,
If there ezist a real u > 0 and an index n > k + 1 such that
Pn(vu) <1,
and
0<pi(r,u), 7=0,1,---,n—1
and

supz“f(z) <1,
z>0

then the origin attracis all positive solutions of the difference equation
Tn+1 = T f(Tn—k). (1)

Sketch of the Proof: For each 7 =0,1,2,... set

§2= pi(5m): %= ) and = z? f(z;)-
Then for all m > n > k from Equ. (1) we can obtain

= 1'[’?""“‘1 n—1

Tm+1 =0 (ym—(k-i-j))ci (Em--(n—-l))C“Hj:n_k(zm—(k+j))Cj

< (zm-(n—l) ) & H?’:—'{t—k (zm—(k-{—j}),;j
n-1

< (Im—(n—l})Cﬂf(O) 1SRk % < (xm—(n—l))Cﬁ

and therefore
Ty < Tm—n, (6)

for all m > n + 1. From (6) we conclude that the limit

Ime= . imp, s
o j—+oo Gl

exists. (Actually the sequence () can be extended to a full limiting sequence.
More facts on this item as well as its use can be found in [3-7].) By the continuity



of the function f the sequence (I,) satisfies Equ. (1). If a term [,, is zero, then
l; =0, for all j > m. So, assume that it holds I, > 0, for all m. Moreover it
follows that the limit

[} ;= lm Il
m Jj—+oo e

exists. Now we observe that
Lt <85,
foralii=0,1,... and so
Im+jn < Tmtjntin,
foralli=0,1,--- and § = 0,1, 2... Taking the limits first with respect to j and
then with respect to 7 we obtain

A

Again we have
lm < Tm+jntin
foralli =0,1,2... and j = 0,1,2... Thus

[m < hm Tm+jn+tin = lm-{»—jne

1—+00

which gives
I il

The two previous inequalities imply that the sequence (I,,) is constant, thus the
limit

Hm z;=:1

j—r+oo
exists. This number is a (stationary) solution of Equ. (1). By using comparison
facts as the above, we can easily show that [ = 0 and the proof is complete.
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